In-store digital music sales

I was at an InMotion store at SFO international airport earlier today looking for a fabulous device called InFlight Power. There was a wonderful piaono/violoncel music piece playing. I didn’t think of using Shazam to figure out what is was. Instead I asked the sales guy what is was. He told me it was Melos by Anja Lechner & Vassilis Tsabropoulos. I memorized it (well… part of), then tried to pull it out from iTunes (not available there, but available at Amazon.com).

This got me wondering: shouldn’t InMotion get a share of that purchase? after all, they pay the rent, CD inventory and the salary of the store manager.

Why not providing a free Wi-Fi service at InMotion that would allow a user to get the playlist, say in the format of an OpenTape, then purchase it from iTunes or Amazon on the spot. I guess 5% of $.99 from iTunes is not enough. Amazon MP3 10% affiliate commission makes more sense but does not seem like it would be enough either.

I wonder what it would take for such a service to be profitable for InMotion. Maybe forcing the full album purchase with a convenience fee for the download service, roughly an average $15 price that would get the DJ/musician a $3 commission. Next an extension to iTunes that would publish automatically the playlist in OpenTape format with the download link would be a great way for DJs and musicians to promote their music in public spaces. 

Osamu Tezuka’s Mermaid

I discovered Osamu Tezuka’s Mermaid at a retrospective of some of his earlier animation movies organized in 2003 by a local cinema, Rue des Feuillantines in Paris.

I absolutely loved the Mermaid, which is to me more of an animated poem. The music Prelude to the Afternoon of a Faun by Claude Debussy is equally magnificent.

I really hope they play it at the current even marvelofmanga.org, but in the meantime, I found that you can watch it on Google Videos:

Mapping musical tones to colors

In his 1978 book titled The Cosmic Octave, Swiss mathematician and cosmologist Hans Cousto provides an interesting way to map musical tones to colors.

The idea is based on the tonal equivalence of the octave: doubling a tone’s frequency produces the same tone at a higher pitch, and vice-versa. If you double enough times a given tone, you quickly leave the range of frequencies that can be heard by a human. But if you continue doubling the frequency, for a total of 40 times, you reach the range of visible frequencies.

For instance, if you start with an A/La at 440Hz, by multiplying 40 times 440Hz by 2, you obtain 483,785,116,221,440Hz, i.e. approximately 483.78THz. Using the Spectra software, you can then obtain a visualization of this frequency. You get the following color:

483.78THz (A 440Hz)

While one can argue whether the tonal equivalence of the octave can be pushed that far, switching along the way from sonic waves to electromagnetical ones, since I’m not qualified to discuss this seriously, I thought it would be at least fun to apply this technique to 12 colors of the chromatic scale. Here are the results for your viewing pleasure:

C
C#/Db
D
D#/Bb
B
F or
F#/Gb
G
G#/Ab
A
A#/Bb
B